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Abstract. An approach based on the theorem that every variational symmetry of a variational 
problem is also a symmetry of the Euler-Lagrange equation, has been applied to find the 
generalised symmetries for the generalised Henon-Heiles system, a system possessing 
non-polynomial type potential and a super integrable system. The constants o f  motion o f  
these systems have also been found. 

1. Introduction 

Finding the integrability or non-integrability of nonlinear ordinary differential 
equations (ODES) is always an interesting problem (Arnold 1978). This question has 
again become important due to the identification of many new physical phenomena 
belonging to either of the above groups. To test for integrability, many authors have 
recently applied PainlevC analysis for determining the single-valuedness of solutions 
(Sahadevan 1986, Ramani er al 1989) or certain direct methods for constructing the 
required integrals of motion (Kozlov 1983, Hietarinta 1987 and Hietarinta er a1 1988) 
and constructing Lax pairs (Weiss 1984). The integrability of a system can also be 
analysed systematically through the invariance of either action integrals (the variational 
approach) (Logan 1977 and Lutzky 1978, 1979) or the equations of motion themselves. 
In this direction, Lie’s one-parameter continuous point transformation has been widely 
used to find the symmetries and infinitesimal generators of the invariance group 
(Dickson 1924, Cohen 1931, Bluman and Cole 1974, Ovsiannikov 1982, Leach 1981, 
1985). However, it is realised that the point transformations cannot provide the 
complete symmetry group underlying the system. Consequently, the required constants 
of motion are not available for many systems. A generalisation of the point transforma- 
tion has been introduced, called Lie’s infinitesimal tangent or contact: transformation 
(Fokas 1979). Here the transformation also involves the first-order derivatives of the 
dependent variables. The symmetries obtained through the transformation are called 
contact or dynamical and variational symmetries (Cohen 1931, Olver 1986). 

Recently, Sahadevan and Lakshmanan (1986) and Cervero and Villarroel (1987) 
have obtained generalised symmetries through the invariance of the equations of motion 
and the variational principle, respectively, for certain class of systems. It is noticed 
that the approach utilised by Cervero and Villarroel was not able to give the symmetries 
explicitly. In fact, the symmetry generators they obtained involve certain undetermined 

i Contact transformations exist for systems with a single dependent variable only (Ovsyannikov 1982) 
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quantities. It is known that not every symmetry of the equations of motion is a symmetry 
of the action integral. The simplest example is the scale transformation (Olver 1986). 
In addition to this, the action integral is not uniquely associated with the equations 
of motion, which are the Euler-Lagrange equations for Lagrangian systems. To take 
care of the above difficulties, in this paper, we utilise the following point of view. 
Every generalised variational symmetry of a variational problem is necessarily a 
symmetry of the corresponding Euler- Lagrange equations. We have already indicated 
that the converse is not true. Based on this observation, we give a set of overdetermined 
systems of equations from which we can construct the symmetries explicitly. These 
determining equations are obtained in a unified way. We also notice that these 
determining equations are rather less complicated to solve. 

On using the generalised symmetries and Noether’s theorem we can find the required 
constants of motion. Also, we notice that if X (  ) is a vector field corresponding to 
the invariance group and  if I is a constants of motion, then X ( I )  = 0. Furthermore, 
the functional independence of the constants of motion can be easily checked through 
the ‘rank’ condition, which states that a set of functions I , ,  j = 1,2, . . . , k is said to be 
rank invariant if the rank of the k x m Jacobian matrix (aZ,/ax,), i = 1,. . . , m is k. 

This method has been illustrated on the generalised Henon-Heiles system, a system 
possessing a non-polynomial type potential, and  the so-called super integrable system. 

2. Invariance of the action integral and the constants of motion 

We consider a two-dimensional Lagrangian system. Let J be the action integral defined 
by 

J ( X ( t ) )  = Iob u t ,  X ( r ) ,  X ( t ) )  d t  x = (x ’ ,  x”. (1) 

The relative minimum of J,  denoted by 6J = 0 leads to the following Euler-Lagrangian 
equations: 

i = 1 , 2  - 

for a s r s b. 
Now, we consider the one-parameter infinitesimal transformations 

I = 1 + € T (  t ,  x, x ) + O( e 2 ,  

2’ = x ’ + E&, ( t ,  X ,  X ) + O( E ‘1 i = 1 , 2  

where E is a small real parameter. 

(3) 

DeJinition 1. The action integral (1 )  is absolutely invariant under (3) if and only if 

J ( X ) - J ( X )  =O(&2) (4) 
where 
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The condition (4) is equivalent to the condition (Logan 1977) 

d i  
d t  L ( F , ~ ( I ) , ~ ( I ) ) - - L ( t , X ( r ) ,  x ( t ) ) = O ( E 7 ) .  (5) 

In applications, we shall require a more general definition of invariance than the one 
given above (Cervero and  Villarroel 1987). 

Dejni t ion 2. The action integral ( 1 )  is divergence-invariant if there exists a function 
@(t, X )  such that 

( 6 )  
d i  d@ 
d t  dr  

L( I, 2 ( F), R ( I)) - - L( t ,  x ( t ), x ( t )) = E - + O( E ?). 

Let x '  = x, x2  = y. A two-dimensional Lagrangian system is given by 
L='( 2 x . 2  + y ' ) -  V(x,y) 

where V is the potential of the system. Using (7)  in (2),  we get 

a[;;  ;I;. 
In this frame equations (3) can be rewritten as 

I = t + E T (  r, x, y ,  1, j )  + O( E ?)  

P = x +  E.$,(t, x, y ,  x, ~ ) + O ( E ? )  
j = y + E.$?( t ,  x, y ,  1, $ ) + 0 ( E 2 ) .  

(9) 

Associated with the transformation defined in (9),  we can define an  extended vector field 

a a a a a 
a t  ax ay ax ay 

x = 7-  + -+ .$* -+ ( il - X T )  -+ ( j 2  - y i )  -. (10) 

Now, equation (6)  can be rewritten in the form 

d@ 
X (  L )  + Li = - ( 2 ,  x, y ) .  ( 1 1 )  d t  

Let (Fokas 1979) 

01 = 6, - X 7  U? = 6 2  - yr. 

Now, we define a new vector field 

where 

u: = D,ul U ;  = DIU1 

and 

a a a a . . a  
at  ax ay ax a j  

D, = - + X - + I; - + X - + y - . 

It is clear that there exists an  isomorphism between the vector fields ( 10) and (13 )  
(Fokas 1979). 
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Definition 3. Equations (8)  are invariant under (9) if 

E(R)I,,=o = 0 

where E is the extended operator of (13) given by 

Equations (15 )  can also be derived in terms of the FrCchet derivative 

where 

and D, is given by (14). 
We can easily check that 

E(R)lcl=o = R'[T] = 0. 

Using the above formalism, we can write down the invariant equation of equation (8) 
explicitly as 

(19) 

The variables x, j ;  are not independent of t ,  x, y ,  x, 3 because of (8).  After eliminating 
x and ,i; by using (8) in the invariant equations, we get expressions as functions of 
x, y, x, y and t .  To start with, we assume that 7, 6, and & are in the form 

6, + U, v,, + U? v,, = 0 i j 2  + U, v,, + U? v,, = 0. 

7 = ao+ a , x +  a.$ (,= b,,+b,x+b,y 6 2  = CO+ c ,x  + cr?' (20) 

where a , ,  b, and c, ( i  = 0,  1 , 2 )  are functions of t ,  x and y only but not of x and y ,  and 
thus 1 and y are free variables in the invariant equation. We notice that in equation 
(20) we can also assume nonlinear terms in x and j .  In section (3)  we discuss the 
consequence of this assumption briefly with an example. In  order to find a, ,  b,, c,, 
i = 0 ,  1,2 ,  explicitly we adopt the following theorem (Olver 1986). 

Theorem. If G is a variational symmetry group of the functional ( l ) ,  then G is also a 
symmetry group of the Euler-Lagrange equations. 

Substituting (20) into (1  1) and equating the various coefficients of i" ' j ' ' ,  m, n = 
0,  1 , 2 , 3 , 4 , .  . . , to zero, we get an  overdetermined system of equations in T, 6 ,  and &.  
Further, as required by the above theorem, these determining equations should also 
satisfy the invariant condition of the Euler-Lagrange equations. We first present the 
values of a,, b,, c,, i = 0,  1,2. These can be found by solving the system of differential 
equations given in the appendix: 

= + a04Y + 6 s  (21a)  
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where ao3, ao4, u,,~, a,,, u 2 , ,  bZ5, bZ6, cz4, bo,, bz8, c16, cZ5 are functions of t only and  
boz is a function of x and t and q,2 is a function of y and  t .  Also, k ,  , k z ,  k3 and k4 
are constants. The remaining determining equations are: 

where subscripts denote the partial derivatives. By successively solving the equations 
(24a)-(28) together with the potential V of a given system, we can determine the 
values of 7, 5, and 5, explicitly. 

After having determined the symmetries, we use them in the following Noether's 
theorem to obtain the corresponding constants of motion. In fact, if L is non- 
degenerate, there is a one-to-one correspondence between equivalence classes of 
variational symmetries of the functional and the constants of motion of the Euler- 
Lagrange equations of motions (Olver 1986). 
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Noether's theorem. Suppose E,  denotes the left-hand side of the Euler-Lagrange 
equations 

and if the action integral (1 )  is divergent invariant under ( 9 )  then (11) gives the first 
integral of motion as 

(29 )  

where is calculated from (11). 

3. Examples 

In this section we apply the method described in the previous section to three types 
of potentials. We also find the integrals of motion for each of them. As a first example, 
we consider the following generalised Henon-Heiles potential: 

V ( x , y ) = i ( x ' + y 2 ) + A x 3 +  Bx2y+Cxy2+ Dy'. (30 )  

Then, the corresponding Euler- Lagrange equations of motion are 

x + ( x + 3 Ax' + 2 Bxy + Cy ' ) = 0 

Making use of equations ( 2 2 a ) ,  (22b) ,  ( 2 1 a ) ,  (21b)  and ( 3 1 )  in ( 2 4 a ) ,  we get 

[ -% a,, ,, + k4,) - b?5rly + b02~  + a,,, + a l Z r r ) x  + b,,,,v + bhr 

i; + ( y + Bx' + 2 Cxy + 3 Dy ?) = 0. ( 3 1 )  

-$(ao3,x+ ao4,y+ kS,) + ! ( k , y  -r a l _ , ) ( x  t 3Ax2+2Bxy + Cy')  

+ { ( - k l x + a , , ) ( y +  B X ' + ~ C X ~ + ~ D J ~ ' ) = O .  ( 3 2 )  

Differentiating (32 )  with respect to x thrice, we get 

b0~rrr; , -3klB=0.  

Solving ( 3 3 a ) ,  we obtain 

where bod, bo?, b06, bo, are functions of t only. Making use of (336)  in (32 )  and 
equating the various powers of x and y to zero, we get 

k , = O  a,? = 0 a,\ = 0 bo4 = 0 
(34 )  

Similar analysis has been carried out for the equations (24b) - (27a) ,  wherein we have 
used equations ( 2 1 ) ,  ( 23 )  and ( 2 2 a ) ,  (336)  and (34 ) ;  we get the parametric choice 

bOs = 0 = k? b06 = (ia05r - b26r)* 

3 A =  C B = 3 D  

and 

a ,  = O  a,=O a n = k i i  bo = 0 b,  = k,' 

bz = ki3 C" = 0 ci = ki, C? = k , ,  

where k , ,  , k I l ,  k, ,  are constants of integration. 

( 3 5 )  
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Solving equations (27b), (27c) and  (28), using equations (35), we get 

@ = -2 k l  V - 2 k ,  3( XY + Dx' + CX'J~ + 3 OXY' + Cy3). 

r = k , ,  5, = k,2x + kI3j .  = k I 3 x +  k l , j .  (37) 

(38) 

We can directly check that the symmetries uI and u2 satisfy the invariant equation 
(19). On using equations (38) in (131, we get the corresponding extended vector fields 

(36) 

Substituting (35) into (20), we get the infinitesimals as 

Substituting (37) into (121, we get 

= (k i2  - ki I + ki 3 j  ~2 = kI3X + ( k12 - k I ) j. 

a a a a  a a a a  
ax , a)? a i  a? - ax ay ax ay 

2 - j -+x-+j-+x- .  (39) 2 -X-+$-+X-+j- 7 -  I -  

Substituting (36) and (37) into (291, we get the following integrals of motion: 
I -x '+ j " (x?+y ' )+ lC  x 3 + 6 D x ' y + 2 C x ~ ~ ' + 2 D y ~  

z2 = x.+ + xy + Dx3 + cx'y + 3 Dxy ' + fCy3. 

I -  

Since I , ,  I2  are rank invariants, they are functionally independent. 
We have repeated the analysis for all nonlinear degrees u p  to six in x and y and  

obtained nonlinear symmetries. However, in each case the corresponding constants 
obtained through Noether's theorem are the above constants only. As a demonstration 
we give below the results for sixth-power nonlinearity in x and j. 

Now we assume that the infinitesimals r, 6 ,  and are in the form 
6 

r =  c a m n x m j n  

6 

&,= c bm,,x"'jfl O s m S n s 6  
m , n = n  

6 

& =  c,,xmjn 
m . n = O  

where the a,,,,, b,, and c,, are functions of x, y and t. Making use of the equations 
(40a)-(40c) in (11) and  equating the various powers of amy", O S  m + n G 6, to zero in 
the resulting equation, we get a set of determining equations which, when solved, gives 
the infinitesimals 

r =  c amnxm.vt1 
O s m + n s 6  

(1 = u ~ , V + ( ~ Q ~ + C Z ~ , V +  k , ) i +  b o l j + ( f ~ I " + ~ 3 , V ) i '  

+ b, ,xy + bo2j12 + ( fa2 ,+  a40 V)X3 + b21i 'y  

+ U ,  2Xj' + b,3j3 + (fa,, + U,,, V)X4 + b3 X 3 j  

b2?f ' j '+  bl3XY3+ b,4$4+$~4,,X'+ b41X4y 

b3,x3$ + b23f'.y3 + b I 4 x j 4  + bo5ys + $asox' 

+ b4'x4y2+ b33x' j3+ br4x2y4+ b,,xys+ bn6j6 
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& _ -  = h, V +  ( a ,  , V +  k7 - b",).t + (!a,,,,+ b,)' V +  k x ) j  

+(?b,,, + a2 I V - b, I ).i2 t ( ! a , ( ,  + a ,  2 V - bo?).?? 

+(?a,,, + 4, VI?'+ ( 4 0 1 1  +a,, V -  b'I I.?' 

+ ($~ , ,+ ia , , , t  a22V- b , ' ) . t 2 ? + ( i ~ l l  +~,3V-b, , ; ) . t? ; '  

+ ( $ ~ , , , + u , , ) ~ ~ + ( ~ u , , + u , ,  V-b31)i4 

+ ( ~ a , , , + ~ a , , +  a 3 ' V -  b22)x3?;+(ia2,  + i a , 1 3 + ~ 2 3 V -  b13).?.2?;2 

+ ( ~ a , z + a l , V -  bo , j . ??3+(~a ,~3+ a o 5 V ) j 4  

+( fa3 - b,, ) i5 + ( 
+(?U,,  + !U , , -  b23) .?"! : '+(?~, ,+~~, , , -  b,,).?'j3 

+ a,,, - b32 j i " j  

+ ( ! ~ 1 3 -  b(,,).???:"+ ia(j,?;+({a,, - b5I) i6  

+( ia3,+~ai , , -  b,.2)x5?;+ (:ad1 +;a,, - bi3).?'?;' 

+ ( ~ ~ , ~ + ~ a , , -  b2,).t3j'+ - b,5)x'?;J 

+($a l4  - bo6)iy' + ;auFjh 

where k ,  and k, are constants. 
and & in Noether's theorem, we get the same constants of 

motion (40). The values of a,?,, , b,,,, , 0 5 m + n 6 ,  can be calculated explicitly by 
making use of the invariance condition for the Euler-Lagrange equations of motion 
as we did above. 

We also apply the above procedure to the non-polynomial type potential. As an  
example, we consider the following potential (Hietarinta 1987): 

Substituting these r, 

V(.U 5 .  ),) = X ~ + J ~ ~ + ~ X ' ~ ' + A X ? +  By2+ CX-'+ D f ' .  (41) 

We obtain the infinitesimals 

T = a ,  

(? = k ,~y .?  + [ (Y - k? .~ '+ k2( B - A)]?. 

(, = (a2 - k2Jsz).t + k'xy?; 

where a 2 ,  cy, and k? are constants. Hence 

U ,  = [ (a2 - a,) - k2y2].? + k2xyj ~2 = k2x~X + [ (a2 - a,) + k2( B - A)]?;. 

Substituting (43) in (13), we get 

d 

ay 
+ [ ~ y i  + ~j.? + . t ' ~ s + j (  B - A ) ]  7. 

The associated independent constants of motion are 

I ,  = i' + f' + 2 ( x' + y ' + 2 . y ' ~ '  + Ax' + By' + C.X ~ ' + Dy -') 

I -I - 2(  xy ' - x$ j 2  + Cx 'y' + Dx'y -' + ( A - B )[;U' + y4  + x 2 y 2  + By' + Dy '1. 

(43) 
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4. Super-integrable systems 

For the above two problems, we have found that there exist two time-independent 
constants of motion. However, there are systems for which there exist more than two 
time-independent constants of motion. In this section, we discuss such a system called 
a super-integrable system (Hietarinta 1987). By the super-integrability of a system, it 
is meant that for a system with two degrees of freedom the maximum number of 
time-independent constants of motion is three, all of which are not in involution. 

We consider the following type of potential: 

(45) 
., 

V (  x,  y ) = A ( .x2 + y ') + Bx + Cy -. 

Again by applying invariance algorithm discussed earlier in section 3, we finally obtain 

T = p  (1 = ( i k , j ~ ' + k , ) X - ~ k l x V j  

(, - = -'k l x y x + ( ( f k , x ' + k , ) ~  

where j3, k , ,  k5 and k ,  are constants. From (46) we get 

V ]  = ($4, J'? + k5 - p )X  - i k ]  xyj g 2  = - i k l  . x ~ X  + ( i k l  X' + k ,  - /3 )j. (47) 

Inserting (47) into (13) we get 

d +i( x x j  + x'y - xyx - f ' y ) - . 
a .V 

The resulting integrals of motion are 

I, = x + 2Ax + 2 Bx ' 
1' = j' + 2 Cy -' + 2Ay 

I 3-2 (xy -xy )z+  -I ' Bx-'y'+Cx2)'- ' .  
(49) 

5. Conclusions 

We have demonstrated that this approach provides the generalised symmetries naturally 
and  explicitly. We have applied this method to a generalised Henon-Heiles system, 
a system with non-polynomial type potential and to a super-integrable system and 
consequently obtained their required numbers of constants of motion. The existence 
of master symmetries and  bi-Hamiltonian structures of nonlinear ODES will certainly 
further clarify the subject of integrability, as they played a vital role in proving the 
integrability of nonlinear partial differential equations (Oevel and  Falck 1986). 



2844 K M Tamizhmani and A Annamalai 

Acknowledgments 

We sincerely thank Professor M Lakshmanan, Dr H Yoshida and Dr R Sahadevan 
for many useful discussions. We also thank Dr H Yoshida for suggesting the problem 
of a generalised Henon-Heiles system. The authors are grateful to the referees for 
their useful comments. One  of the authors (AA) thanks the University Grants Com- 
mission of India for the award of a Junior Research Fellowship. 

Appendix 

The values of a,, b,, c,, i = 0, 1,2,  given by equations (21)-(23) in section 2, can be 
obtained by solving the following set of determining differential equations: 

col.+ bo, + cIr  + bzt = 0. (A5b)  

Solving equations (Al) - (A5)  consistently, we get the values of a,, b,, c,, i = 0, 1 ,2 ,  given 
in section 2. 
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